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“There is no greater agony than bearing an untold story inside you.”

-Maya Angelou



Abstract

Crying is known to be a crucial vocal communication medium through which an infant

conveys emotions and experiences. The acoustic signal carries sufficient clues about the

cause of infant’s crying, the perception of which is easy for a mother or a doctor, but it is

challenging to automate such recognition through a machine. Differentiation in the cry

is largely a resultant of distinct vocal fold characteristics such as the tract which mostly

consists of soft tissues. This results in a highly varying sound production mechanism

that causes acoustic characteristics to vary significantly. Automatic identification of

cry-cause factors has vast applications in assistive healthcare, and therefore can help in

taking timely remedial measures in critical situations.

For studying and extracting acoustic patterns from infant cry signals, that characterize

them with respect to various pre-determined causes, an infant cry signals database (IIIT-

S ICSD2) is collected from paediatrics clinic. Contributions of the thesis are given below.

• Acoustic analysis of cry sounds is performed on the cry data to characterize

cry sounds with respect to the following two objectives.

– Finding discriminating characteristics that represent the excitation source

and cry production system behaviour, for different cause factors.

– Identifying different sound sub-types constituting an infant’s cry sound, based

on sound quality and acoustic parameters.

The acoustic parameters or low-level descriptors (LLD) considered in the analy-

sis are (i) f0 contour, (ii) sub-band spectral energy and (iii) formant frequencies.

Preliminary analysis is performed using spectrograms and by visual inspection of

temporal progression of these LLDs. We then derive suitable statistical parameters

for these low-level descriptors that could further help characterize cry sounds at

the categorical level. The characterization is considered at different levels of gran-

ularity. At a broader level categorization, we consider a set of crying-causes, the

implications of which are either severe or non-severe in nature. For example, pain

and stranger’s anxiety represent definite forms of severity. Whereas, discomfort

and environmental change do not. At finer level categorization, these categories

are considered individually. Observations and subsequent experiments show that

categories that are severe in nature have several peculiarities in common, which are

easily distinguishable from the ones occurring in non-severe cries. But at finer level

of categorical granularity, the key distinctions observed are primarily in terms of

the changes occurring at the excitation source level, the characterization of which

requires the cry sounds to be represented in a way that captures these variations

in a reliable manner.



• Infant cry cause classification is done using a set of spectral parameters. These

are defined using low-level descriptors and statistical functionals that are obtained

from acoustic analysis of cry signals. The feature-set obtained is first evaluated

towards classifying cry sounds between categories that represent either some form

of severity or absence of it. Cepstral based features and their derivatives, are

empirically observed to give good classification accuracies (CA). The classifiers

used for these tasks are support vector machine and multilayer perceptron, where

the performances of both are observed to be reasonably good. Same features when

assessed for distinctive nature towards classification among categories at finer level,

i.e., for pain and stranger’s anxiety, the classification accuracy (CA) is found to be

of a reduced value. An end-to-end convolutional neural network, when trained over

raw cry and zero frequency filtered signals, is observed to perform classification

in an optimal and efficient manner, whereas raw cry based inputs were found not

to give good CA for pain vs. stranger’s anxiety classification. The approach of

performing classification and learning the suitable acoustic representations at the

intermediate convolutional layers, in a joint manner, optimizes both these sub-tasks

involved in the process. Selective component filtering of the input signals based

upon the acoustic parameters, observed from the cumulative frequency responses

learned by the CNNs, helps validate the significance of these parameters towards

the optimal classification.

• Baby sounds classification is done by implementing the approach of end-to-end

learning using CNNs, on baby sounds sub-challenge data-set [1], that has different

baby sounds like canonical, non-canonical, laughing, crying and a fifth category

called junk. Two different approaches are examined towards classifying different

baby sounds into 5 categories given in the data-set. These are listed below.

– A monolithic approach involving implementation of a single CNN.

– A Modular approach, where the multi-class classification task at hand is di-

vided into smaller sub-tasks for sub-sets of fewer categories, designed accord-

ing to the signal content represented by the category being considered.

The signal content specified for the second approach is defined in terms of the pres-

ence of either speech-like or para–linguistic information within the baby sounds.

The output scores of the sub-tasks are then fused into a vector and a multilayer

perceptron is trained over it towards the 5-class classification objective. Although

with little improvement, the modular approach of classification is observed to give

better performance as compared to the monolithic approach. This experiment

also suggests the significance of the network parameters that a CNN learns when

trained over an infant cry data-set. The knowledge from such a network when



transferred over to another task like classifying crying vs. laughing, is observed to

provide significant improvement as compared to the implementation without it.

Encouraging insights are derived from the empirical examination of the acoustic char-

acteristics of infant vocalizations and classification approaches evaluated on different

infant sounds. These insights represent cues that could further help with tasks involving

development of automated assistive health-care technologies, for infants.
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Chapter 1

Introduction

The earliest attempt by an infant to produce speech sound can be attributed to the

laryngeal articulatory mechanism that leads to a range of qualities, reflecting phonetic

possibilities and stricture types. It is observed that during the first year, the infant

masters the control of articulatory detailing. Articulation control in the pharynx appears

to be a necessary prior step towards expanding the articulation mannerism control to

oral vocal tract tools. Therefore, the acoustic cues induced by the sound produced with

the help of pharyngeal articulation, along with the alternative excitation mechanisms,

are also crucial towards a systematic study of infant’s sound production system. The

motivation being that the baby sounds can exhibit high degree of variability, since vocal

apparatus as well as muscular and motor control during the production of sounds are

still developing [2], hence making the task of analyzing infant vocalization challenging.

Speech analysis methods have been mainly developed on adult human speech, and they

typically decompose speech signal into glottal closure based primary excitation and

oral vocal tract components called as system characteristics. Thus, conventional speech

analysis methods can have limitations [3]. This raises concerns about the utility of

the conventional speech processing techniques for analyzing and processing acoustic

characteristics of a system, which is still in nascent stage. In-order to address this issue

and provide solutions that can help derive critical information from the acoustic cues in

infant vocalization, it is important to first consider key differences between the sound

production mechanisms of an infant and an adult.

1.1 Do infants vocalize the same way as adults?

Studies have shown how an infant acquires the control over basic speech production

capacity [2]. It is observed that the speech begins in the pharynx and the phonation is

1
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Figure 1.1: Depiction of the reconceptualization of the standard articulatory model
into two primary articulatory domains in the laryngeal articulatory model.

assisted by the constrictions in the larynx. The laryngeal articulation includes glottal,

supra-glottal and pharyngeal/epiglottal mechanisms and three vocal levels of excitation

source: vocal folds, ventricular folds and aryepiglottic folds. So, alternative source vibra-

tions and pharyngeal resonances influence the acoustics significantly. Surprisingly, it is

also observed that laryngeal articulation plays a key role in distinguishing linguistic pho-

netic meaning in a significantly large number of languages of the world [4–7]. This could

be the main cause of cultural influence that infants develop within their vocalization

activities in their infancy.

Figure 1.1 shows the re-conceptualization of the standard articulatory model into two

primary domains in the laryngeal articulatory model [8]. The laryngeal section of the

vocal tract has a series of valves that have their own functionality and structure. The

figure builds on the idea of laryngeal vocal tract and the involvement of aryepiglottic folds

in the production of different sounds. Irrespective of the differences in the vocal tract

shapes of an infant’s sound production system from that of an adult, the consideration of

the effects of laryngeal articulation and secondary source of excitation is crucial towards

the acoustic analysis and the study of infant sounds like cry, babbling, canonical sounds,

etc.

1.2 Motivation

In infants, the vocal cords being in primal stage and articulators not having fully evolved

(the problem is further complemented by the initiation of exercising control over pre-

liminary articulation activity in the laryngeal zone) demand utmost importance to the
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dynamic intricacies of infant sound production, in performing tasks that involve acoustic

analysis of infant vocalizations. Due to significant differences in the speech/sound pro-

duction mechanisms for infants from that of adults, setting of the required parameters

for acoustic analysis seems a challenging research task and that motivated the thesis.

1.3 Objectives and Scope of the Thesis

The objectives of the work documented as part of the thesis are listed below.

1. Deriving acoustic patterns from infant cry sounds, towards their characterization

with respect to different pre-determined crying-causes. Also, correlating peculiar

trends with different factors that affect cry acoustic analysis and finding whether

they are indicative of additional para–linguistic information like infant’s health or

factors like age and psychological state.

2. Identifying the set of spectral features and alternative source representations, that

optimally represent the distinctive characteristics required for the task of crying-

cause classification.

3. Comparative examination of different approaches, towards obtaining the one that

is empirically observed to perform the classification task in an efficient manner.

4. Validation of the spectral cues and approaches established empirically, towards

their utility as part of systematic evaluations concerned with infant vocalizations.

To achieve the above objectives, the thesis did the analysis of the acoustic characteristics

of infant cry sounds where the techniques used for source analysis are auto-correlation,

LP Residual, sub-band spectral analysis and zero frequency filtering. Classifiers like

support vector machine (SVM), multilayer perceptron and convolutional neural network

(CNN) are used, for the tasks involving classification of infant sounds. Further, the

utility of acoustic cues learned by CNN based experiments is validated by selective

frequency filtering using digital resonators, followed by retraining of the CNN.

1.4 Thesis Organization

The work documented in the current manuscript attempts to examine the acoustic char-

acteristics of different baby sounds. We begin our investigation by characterizing infant

cry sounds by analyzing the excitation source and system characteristics, for different
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crying causes and acknowledge the challenges observed in doing so. Then we move on-to

examining various approaches, towards classifying not only infant cries, but also differ-

ent baby sounds, into pre-determined categories. The organization of the entire work

documented in this manuscript along with a briefing of each chapter is given below.

• The introduction, which is the current chapter, introduces the thesis along with

its objectives and scope.

• A review of the work documented as part of the literature, is done in chapter 2.

• The primary data-set on infant cry sounds, IIIT-S ICSD2 is described in detail, in

chapter 3.

• Features explored and techniques evaluated as part of the current study, are men-

tioned in chapter 4.

• In chapter 5, cry sounds are characterized for different causes, at both levels of

categorical granularity, by examining excitation source and system characteristics.

• The challenges faced during the cry cause analysis are acknowledged and a de-

scriptive investigation is done about different cry sounds sub-types, in chapter

6.

• Automatic classification of infant cry sounds, in different cause categories is at-

tempted by evaluating conventional machine learning and relatively recent end-

to-end learning based convolutional neural networks (CNNs). This constitutes

chapter 7.

• Chapter 8 examines effectiveness of end-to-end learning approach on another,

multi-class classification task involving baby sounds sub-challenge data-set, made

available as part of INTERSPEECH 2019 ComParE challenge.

• Chapter 9 provides the summary and concludes the topic discussed in this thesis,

by briefly stating possible future directions of this work.

• Publications related to the work in this thesis, along with their corresponding

details are given as part of chapter 10.

1.5 Conclusion

This chapter begins with a detailed description of the speech acquisition mechanism in

the early stages of anatomical development of an infant. It then proceeds further to lay
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the foundation of the research problems involved in the study of infant cry vocalization.

The challenge of capturing the excitation source characteristics of infant vocalization, es-

pecially during crying, is also noted herewith. Besides setting the tone of the problem at

hand, by expressing the motivation, the chapter also briefly lists down the organizational

structure of this thesis.



Chapter 2

Literature Review

The advent of the research on para–linguistic speech analysis is traced back to the middle

of the 20th century, notably through the statements given by Crystal, that defined the

phenomena of para–linguistic in speech as “vocal factors involved in paralanguage” [9].

Although, with no formal connection to the linguistics, the potential of the meaningful

information contained within the acoustics of an infant cry, has already started convinc-

ing medical practitioners, parents, caregivers, etc., about its diagnostic importance.

Infant cry is a quintessential bonding mechanism, triggering the environment towards

alerting and caring for the needs of the child. The cry signal quite effectively induces

sympathetic nervous system activation among the people around them, and paedia-

tricians, as well as parents have often acknowledged it to be quite informative about

the health condition of the child [10]. Similarly, a laugh can indicate the well-being

of the child. The cry sound is usually modulated to emphasize different patterns and

characteristics reflecting a distinction of the causing factors. It is also an established

medium to diagnose hidden pathological issues in infants and thereafter can be used in

the treatments. Studies have highlighted a notable difference in the signal characteris-

tics for infants with different neurological conditions. The cry signal has inspiratory and

expiratory phases, of variable duration, where the latter is accompanied with rhythmic

patterns of sounds. C. Manfredi et al. [11] reported that infant cry is characterized by

high f0 values which keeps changing abruptly. As infants grow, they learn to produce

speech sounds through interaction with the elders. Delays in acquiring these abilities

can lead to speech and language-related disorders. Thus, the development of automatic

methods to analyze baby sounds is of considerable interest.

Tools like short-time spectrograms and cross-correlograms have been used towards ma-

jority of the infant cry acoustic analysis, where primary assessment of the spectro-

temporal characteristics of signals have led Neustien [12] and Petroni et al. [13] to derive

6
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various insights based on temporal progression and inter-segmental cross-correlation

analysis. Also, a series of experiments have been conducted by Cohen [14] and Lavner

et al. [15], in which they evaluated features like pitch, formants and MFCCs, using pop-

ular classification techniques like SVM and KNN, including the neural network based

classifiers like feed-forward and convolutional neural networks.

Cry signals are generally analyzed on the basis of the parameters which are usually

popular with the speech systems for adults. Optimal estimation of the spectral char-

acteristics for infant cry signals is a challenge owing to its rapidly changing nature. A

significant contribution has been made through academic challenges [16, 17], targeted

at the development of the techniques, features and corpus collection for the tasks like,

para–linguistic research, emotion recognition from speech, speaker trait identification,

etc. Excitation source characteristics of emotional speech sounds such as shout was stud-

ied by V. Mittal [18] by using modified zero frequency filtering (modZFF). The same

author [19] characterized para–linguistic sounds such as laughter using linear prediction

(LP) analysis and dominant frequencies. The techniques were extended [20] towards the

examination of aperiodicity for expressive voices such as Noh voice. Although, these

studies help in analysis of para–linguistic sounds for adult speech, consequentially it has

caused dearth of accumulated understanding, relevant techniques and useful resources for

the applications that do not involve evolved speech like characteristics, like for analysis

of infant sounds in the early stages of speech development. Nonetheless, it is customary

to have the knowledge of the earlier attempts towards closely related tasks.

2.1 Studies on Infant Vocalizations

Previous studies by A. Fort et al. [21, 22] have performed acoustic analysis of infant

cry signals to derive parameters such as fundamental frequency (f0) and the vocal tract

formant frequencies (Fi), based on parametric and non-parametric techniques. Para-

metric methods are based on linear prediction based derivation of the system response,

where estimation of an optimal filter order and fundamental frequency in the residual is

a challenging task. Non–parametric methods are based on liftering in cepstral domain;

with high and low time liftering being performed to estimate f0 and Fi. f0 analysis has

been done by Petroni et al. [13], Cohen [14] and V. Mittal [23, 24] by implementing

Welch’s method, autocorrelation, FFT and modZFF. Due to high absolute values and a

high degree of variability of these parameters, estimation of an optimal length to lifter is

critical. Classifiers based on Gaussian mixture modeling (GMMs) using Mel frequency

cepstral coefficients (MFCCs) are derived by H. F. Alaie [25] to classify normal cry

signals and the pathological cry signals. Another method by Kheddache [26] models
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the MFCCs along with acoustic features such as f0 glide and Fi dysregulation using

neural networks, for early diagnosis of infant pathologies. A recent study by Abbas [27]

attempts to segment the expiratory and inspiratory phases in infant cries using hidden

Markov models (HMMs) trained on MFCCs. The segmentation process is aimed to

aid the systems designed for the automatic detection of infant pathologies. Vocalization

during inspiratory and expiratory phase in infant cries has been used by S. Grau [28] and

R. Orlikoff [29] to derive cues to study their health condition. A set of 15 spectral and

temporal features based on signal energy, zero crossing rate, spectral centroid, roll–off,

formant locations, LPCCs and MFCCs, is utilized by Chang et al. [30] for classification

of causes of infant cry using SVM classifiers.

2.2 Studies on Infant Cry Phonation

Besides the conventional approaches involving acoustic analysis using the traditional

spectral features towards categorical association, it is the characterization of cries with

respect to the dysphonation within these cries, that signify serious medical conditions.

Dysphonation is popularly described by Hirschberg [31] as any deviation in the funda-

mental parameters like pitch, timbre, intensity and noise, from the normal behaviour.

Dysphonation can be considered to be a significant indicator of valuable information

about the psycho-physiological state of an infant. Different characteristics of cries were

measured by Kheddache [32], with notable observations being for regions having phona-

tions with f0 < 750 Hz, and hyper-phonation > 1000 Hz. Whereas dysphonation con-

taining noise or aperiodic sound and unvoiced sounds are observed to be the ones with

f0 = 0 (i.e., no vocal fold vibration).

Studies by Proytcheva [33] and Kheddache [34] have established that abnormal or violent

crying can have potential cues towards detecting pathologies that are either inherently

present since antenatal stage or the ones that develop after birth. Cecchini [35] consid-

ered the infant cry categorization into either anguish, anger and care-seeking. This is

done with the help of feed-backs from 20 females and found dysphonation as the best

indicator of anger or anguish and absence of hyper-phonation as cue for care-seeking.

Pathological dysphonation was studied by Hirschberg [31] in detail, wherein 20 different

types of dysphonation sub-types like hollow, shrill and mew are characterized using pitch

derivatives, glide, shift-break and bitonality. Surprisingly, the crying conditions involv-

ing fussing or acoustic dysphonation of any type are not just restricted to an infant’s

health. Fujiwara et al. [36] studied the crying and analyzed the association between

the fussing and unsoothable crying to the daily-caregivers frustration. A similar task

involving feed-back based cross-validation was carried out by Zeskind [37], in which the
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ratings were given by 20 abusive and 20 reference (non-abusive) parents to the crying

cases studied, for being sick, arousing and urgent.

A concern regarding the developments in this field is the shortage of publicly available

data-sets. The handful of data readily available is not meant for categorical studies. An-

other direct challenge posed is about the disparateness of the categories being studied.

Studies in the past have been done for a variety of causes ranging from pathologies like

asthma to disorders like asphyxia, upper respiratory tract infection (URTI), septicemia,

malnutrition, congenital heart disease, etc. by Chittora [38], Wahid [39], and Chan-

dralingam [40]. This diversifies not only the utility of the characteristic feature-set, but

also the understanding about the approaches suitable for a class specific study, which

although streamlines cause specific discoveries, but ultimately leads to difficulty in com-

parison with the State-of-the-Art in the area and hence the development remains largely

localized. All these limitations are imposed by the unavailability of infant cry data-set in

public domain. It is this lack of understanding and common frameworks with respect to

the resources and techniques that the observations made and a fundamental approach

adopted in this work, towards infant cry acoustic analysis and cause classification, is

motivated from.

2.3 Conclusion

This chapter details through a series of developments that took place as part of the

literature, for the research towards understanding the meaning of infant cries through

machine. Conclusively, features f0, MFCC, LPCC and spectrogram based classifications

haven’t yielded an optimal performance yet, in a manner in which the characteriza-

tion can be generalized. Moreover, studies also highlight the significance of phonation

modalities present within a cry sound that are often correlated with different patholog-

ical states. There are few directions, in which there is a clear requirement of research

and development, wherein highly varying characteristics of infant vocalizations are truly

captured. An attempt has been made to address a fragment of the issues concerned, in

the current thesis.



Chapter 3

Infant Cry Signals Database

(IIIT-S ICSD2)

First attempt from the lab at IIIT-S, towards investigating infant cry acoustics was

done in [41, 42]. As part of these works, the spectrograms of different infant cries

for same infants but for different causes were examined. The observations were cross-

validated using the parameter plotting and comparing, which elucidated the distinctive

characterizing capability of f0 contour for different categories. The data-set used was

IIIT-S ICSD, which was initially collected from a paediatrics clinic, under the supervision

of paediatricians and nurses. Besides for the objective of qualitative examination, it was

the requirement of a larger data-set, with proper ground-truth information that solicited

IIIT-S ICSD2, first introduced in [43].

Details on IIIT-S ICSD can be referred from [41, 42]. The details about the ComParE

Baby Sounds Sub-challenge (BSS) data-set, made available as part of INTERSPEECH

2019, is also used for specific studies in this work and can be referred in detail from

the challenge paper [1]. Only IIIT-S ICSD2 has been focused upon as part of the data-

set description in this manuscript, since it forms the basis of a majority of the study

conducted in this work. Apart from this, the required details on baby sounds data-set

BSS are mentioned wherever necessary and as per the need.

3.1 Building the Data-set

The IIIT-S ICSD2 data-set is also collected from the same clinic, as for IIIT-S ICSD.

The Zoom H4n recorder was used to collect the data, at a sampling rate of 48 kHz. The

recorder has a built-in X/Y configuration of stereo mics to suppress the ambient noise

10
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Table 3.1: Cause, age and gender-wise cry count distribution in IIIT-S ICSD2 data-set

Cry-
causes

Age in months (Male) Age in months (Female) # cry
bouts

Duration
(min.)< 3 3− 18 > 18 < 3 3− 18 > 18

Pain 113 212 80 158 341 74 978 33

Anxt 0 58 40 25 130 34 287 18

Ailt 0 19 0 0 7 0 26 1

Disc 5 0 6 0 47 15 73 3

Envr 0 46 106 0 0 21 173 6

Hung 0 0 0 64 0 0 64 2

Emot 0 5 0 0 3 0 8 1

Overlap 0 75 14 0 11 0 100 3

Total 118 415 246 247 539 144 1709 67

and provide a clean recording at a close-speaking distance. The data-set is collected over

a total of 104 (50 male and 54 female) infants, mostly aging between 6–15 months, with a

maximum age of 6 years. Table 3.1 gives the details of the data collected against factors

like cry causes, gender and age of infants. For additional analysis of the cry sounds, the

cause categories are also studied as part of a broader and a finer level categorization. The

broader level categorization is defined for severe and non-severe crying causes. These

categories form a super-set of the finer level-categories, depending upon the level of

severity they represent. Whereas, the finer level categorization is directly based upon

the causes (ground-truth) for which the cry data has been collected.

Infrequency for the causes such as hunger/thirst, ailment and emotional need was ob-

served during the recording sessions, and therefore there are fewer samples for these

categories, which are not considered as part of the study. The labeling of cry signals

according to different causes was done as per the observations of paediatricians, based

on on-going and historical medical conditions, parent’s inputs and infant’s health status.

The data contains background noise, mostly by other patients and nurses. Pain either

due to vaccination or pathological condition, along with stranger’s anxiety are major

causes of cries which are severe in nature. Discomfort and environmental change are

other less severe cause categories which lead to cries. Therefore, the database is also

grouped into severe vs. non-severe causes of infant cry, for specific studies as part of

this work. Cry sound sub-types observed from the data-set are growl, shrill (mostly

strained, with few softer variants too), squeal and moan. The proposed categorization

of cry-causes at different levels of categorical granularity is shown schematically in Fig.
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Figure 3.1: Schematic diagram of cry-causes, and sub-type categorization at different
levels.

3.1. As a reference to such a categorization, the distinction between different classes

based on their causes has been proposed in literature [44].

3.2 Conclusion

The primary data-set on infant cry sounds used in this study, IIIT-S ICSD2 has been

described in detail in this chapter. In the interest of collaborative research and devel-

opment in this area, the IIIT-S ICSD2 data-set is expected to be released in the public

domain shortly. Although on request basis, IIIT-S ICSD has already been provided in

the public domain for research and non-commercial purposes.



Chapter 4

Features Explored and

Techniques Evaluated

Infant cry data-set IIIT-S ICSD2 is first acoustically analyzed using several fundamental

digital signal processing techniques. These techniques are used to examine the progres-

sion of excitation source characteristics and the variation in articulatory configuration

with time. Characterizing features identified in this process are further evaluated to-

wards their discriminative ability with respect to different pre-determined cause cat-

egories, using different classification approaches. This chapter is dedicated to briefly

introducing the features explored and techniques considered towards acoustic analysis,

and subsequently for classification based tasks performed as part of this work.

4.1 Features explored and associated DSP techniques eval-

uated

Features considered in this study are briefly described in the following sub-section.

4.1.1 Features explored

4.1.1.1 Short-time Spectrogram

This is obtained by processing the segments of the cry signals in the frequency domain,

which is given by,

X(τ, ω) =
n=∞∑
n=−∞

x[n]w[n−m]e−jωn (4.1)

13
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with x[n] being the signal and w[n] being the window function [45]. This gives spectro-

gram and energy, used for preliminary acoustic analysis of a cry signal.

4.1.1.2 Harmonics

The periodicity of the signal is clearly seen during short-time analysis, which manifests

in the form of fundamental frequency and harmonics, as narrow peaks at equally spaced

frequencies in the short-time spectrum [46].

4.1.1.3 Instantaneous Fundamental Frequency (f0) Contour

Instantaneous fundamental frequency or f0 based contour is a key parameter for ana-

lyzing excitation source characteristics [13]. In our primary analysis, the contours from

the f0 estimates are plotted using a State-of-the-Art algorithm YIN [47], which served

as a reference here. These f0 estimates are colored yellow (basic), green (good) and blue

(best). These are then compared with the contour derived using the methods below:

1. Autocorrelation: The f0 contour is computed using autocorrelation with window

length 30 ms and a shift of 10 ms.

2. Linear Prediction (LP) residual: As a secondary validation LP residual is used

with autocorrelation, having window length 30 ms shift 10 ms, LP order 14 and

down-sampling of 10 kHz.

4.1.1.4 Sub-band Spectral Energy

Sub-band spectral energy is derived by performing filter-band analysis. The ratios of

sub-band spectral energies (ε), for the bands under consideration are computed to get

correlated patterns for these sub-bands. It is computed by performing the dot product

of power spectrum (S[k]) and the filter banks (fb) and is given as [48],

ε = S[k].fb

where, S[k] : NX(
Nfft

2
+ 1), and

fb : NfiltX(
Nfft

2
+ 1)

(4.2)

with, N , Nfft and Nfilt are # of frames, FFT bin size and # of filter-banks respectively.
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4.1.1.5 Formant Frequencies

Formant frequencies derived using the LP spectrum are analyzed for examining the

changes in the vocal tract filter, i.e., the system characteristics [49]. First 5 formants

F1 − F5 are examined. A frame size of 30 ms with a frame shift of 10 ms and LP order

50 are used for the LP analysis of the signals having 48 kHz sampling rate.

4.1.1.6 Mel Frequency Cepstral Coefficient (MFCC)

MFCC is one of the most commonly used features for front-ends in the speech recognition

systems. The feature vectors are extracted from the spectra of windowed cry signal. For

a Mel scale cepstrum of order ‘p’, the feature vector is obtained by considering the first p

DCT coefficients [50]. Generally, p is set as 13, and the extracted coefficients are denoted

as M . A total of 52 coefficients, including MFCCs M , delta MFCCs ∆M , and their

standard-deviations, σM and σ∆M respectively, with 13 coefficients each are computed.

4.1.1.7 Zero Frequency Filtered (ZFF) Signals

The ZFF signal is obtained by filtering the speech through an ideal digital resonator

centered at 0 Hz [51]. The equivalent transfer function of the filter is given by,

H(z) =
1

1− z−1
. (4.3)

The equivalent time domain operation is an integrator given by,

y[n] = y[n− 1] + s[n], (4.4)

where s[n] is the differenced and mean removed input signal. Application of the filtering

results in a polynomial type growth trend in the output signal. The filtered signal

therefore has to be trend removed across duration of the approximate pitch period to

obtain the ZFF signal.

Features explained above are computed by implementing the following associated digital

speech/signal processing techniques.
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4.1.2 DSP Techniques used for feature extraction

4.1.2.1 Autocorrelation

Autocorrelation provides a measure of the similarity given by

rx(m) = E[x(n)x(n+m)] (4.5)

between the waveforms of the time functions, i.e., the source signal x(n) and the delayed

version of itself x(n+m) [52]. f0 contour is derived using this technique.

4.1.2.2 LP Analysis

The prediction of the current sample as a linear combination of past p samples forms

the basis of LP analysis, where p is the order of prediction [49]. As A(z) is the reciprocal

of H(z), the LP residual is obtained by inverse filtering of the speech

H(z) =
1

1 +
∑p

k=1 akz
−k =

1

A(z)
(4.6)

First 5 formants are derived from the LP spectrum.

4.1.2.3 Cepstral Analysis

The log of the power spectrum is considered to be the linear sum of the information

representing the speech sound production characteristics and source excitation charac-

teristics. These can be retrieved by processing in the quefrency domain. The resulting

quantities are called as a cepstrum, the low-frequency components of which give insight

into the production characteristics and high-frequency components are excitation source

characteristics [50].

4.1.2.4 Filter-bank Spectral Analysis

Filter-bank analysis is used for the spectral analysis in different frequency bands [53].

Sub-band spectral energy represents the spectral energy (ε) with respect to the critical

frequency based bands under consideration.



17

4.1.2.5 Zero Frequency Filtering

The essence of zero-frequency filtering lies in computing the output of the cascade of two

zero-frequency resonators [54], which is equivalent to four times successive integration

of x[n], the signal. The expression for this is given below,

y1[n] = −
2∑

k=1

aky1[n− k] + x[n] (4.7)

Where, a1 = -2, and a2 = 1. This operation as mentioned previously, repeated twice.

The discontinuities within a zero frequency filtered signal are obtained by subtracting 10

ms (ideally equivalent to a pitch period) moving average at each sample from this signal.

These discontinuities within the source excitation can be obtained from the instants of

positive zero crossings, indicating the glottal closure instants (GCIs). These instants

can be anchored upon to estimate the instantaneous fundamental frequency (f0).

4.1.2.6 Digital Resonator Design

A digital resonator [55] is a special two pole band pass filter with the pair of complex

conjugate poles located near the unit circle. The angular position of the pole determines

the resonant frequency of the filter. In the design of a digital resonator with a resonant

peak at or near ω = ω0, we select the complex-conjugate poles at,

p1,2 = re±jω0 , 0 < r < 1 (4.8)

4.2 Machine Learning Techniques used for Classification

Towards the objective of performing classification of different infant vocalizations, into

pre-determined causes/factors, following algorithms have been used.

4.2.1 Support Vector Machines (SVM)

The support-vector network implements the following idea: it maps the input vectors

into some high dimensional feature space Z through some non-linear mapping chosen a

priori. In this space, a linear decision surface is constructed with special properties that

ensure high generalization ability of the network [56].
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4.2.2 Multilayer Perceptron (MLP)

Data enters at the inputs and passes through the network, layer by layer, until it arrives

at the outputs. During normal operation, that is when it acts as a classifier, there is no

feedback between layers. This is why they are also called feed-forward neural networks

[57].

4.2.3 Convolutional Neural Network (CNN)

CNN is designed to automatically and adaptively learn spatial hierarchies of features

through back-propagation by using multiple building blocks, such as convolution layers,

pooling layers, and fully connected layers [58].

4.3 Conclusion

This chapter gives a detailed list of features and techniques evaluated in this work. The

objective is to provide a brief introduction about the fundamental idea behind them

and their usage in this work. The reader is requested to redirect to the correspondingly

cited resource for a deeper understanding of any individual component. Also, specific

parameterization, as and wherever done with respect to any feature or a technique is

clearly stated, along with the necessary context provided, to maintain the continuity.



Chapter 5

Infant Cry Cause Analysis

The cry audio data is collected for multiple categories. Cries from different categories

are perceptually distinct, and the distinction pattern is perceived in terms of factors like

signal intensity, energy, pitch variation, cry duration, etc. In-order to perform qualitative

analysis, short-time spectrograms are observed for various cries. Based upon the patterns

of harmonics, formants, fundamental frequency and spectral energy observed from the

spectrograms, distinctive characteristics are found to exist for the cries from different

causes. These characteristics are then quantitatively analyzed by deriving suitable low-

level descriptors and statistical functionals that can effectively capture the acoustic

characteristics of the cry signals for different causes.

Towards these objectives, the chapter begins by stating steps involved during the pre-

processing stage of the cry database. This is followed by performing preliminary analysis

using short-time spectrograms. Based upon the observations made, cry sounds are

characterized using basic statistical measures. Acoustic parameters like f0, sub-band

spectral energy and formant frequency are analyzed in further sections, for different

types of cry sounds.

5.1 Pre-processing of Infant Cry Audio Data

During the audio data collection stage, live speech recognition systems are often required

to be complemented by possible hints of words and phrases to improve the accuracy for

specific words and phrases [59]. Whereas, there is no prior requirement of this type

towards the collection of cry data. Although, the recording do need to emphasize on

regions having most prominent presence of cry bouts, as against any imminent ambient

noise present in the background.

19
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Figure 5.1: Waveform with silenced (arrow-marked) and cry audio parts.

Keeping such differences in the perspective, several simple considerations are made dur-

ing pre-processing of the raw cry audio data which is recorded from the clinic. These

are enumerated below,

1. The more the number of data files, the bigger and better the training data that is

required for machine learning tasks. Therefore the recording sessions are divided

into excerpts appropriately. Cry sounds with larger gaps in between two continuous

sub-sessions, are also split as per the requirement.

2. The intermediate babble noise is transformed into the silence regions as shown in

Fig. 5.1.

3. The intermediate pause information (presence and duration) is preserved.

4. Even if the infant crying is extremely inaudible in some regions, with no significant

sound being perceived, these are silence-transformed too. It helps preserve intra-

cry duration required for the study.

5. There is no point in processing the background disturbances for the purpose of

analyzing cry acoustic information, especially when the analysis is happening at

fundamental level. Therefore, such regions are ignored.

6. The raw data collected is preserved to facilitate for the studies examining robust-

ness in the presence of the background noise.

The above-mentioned points briefly summarize the manner in which the entire data-set

is processed.
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Figure 5.2: Illustration of differences in the contours of f0 and its Harmonics observed
in the spectra of infant cries for 4 different categories. (a) Discomfort cry (monotonously
flat contours), (b) Cry due to environmental changes (flat contour with lesser fluctua-
tions), (c) Pain cry (short inverted cup-shaped contours) and (d) Cry due to strangers
anxiety (prolonged inverted cup-shaped contours) [Please observe the changes in the

arrow marked regions].

5.2 Preliminary Analysis using Short-time Spectrogram

At first, spectrograms are observed for characteristic spectral behaviour. These are

4096 point FFT’d, short-time spectrogram with Hamming as analysis window type, and

pre-emphasis factor of 0.97, in the popular speech analysis tool called Wavesurfer [21].

The cry-cause categories examined are: discomfort, environmental change, pain and

stranger’s anxiety. In each category 15, 15, 16 and 20 cry samples, respectively, are used

for analysis.

In Fig. 5.2 (a), it can be observed that spectrogram for the discomfort based cry

is mostly flat with not many variations in the pitch and harmonics. But because of

some high pitched growling effects, energy distribution appears to coexist with cry outs.

Environmental change category has a characteristic intense shrill effect in the sound,

appearing as high-pitched harmonics. This category also, has relatively stable pitch

progression, with lesser short duration pitch fluctuations. Such cries often occur with

the random combination of various cry types like brisk cry outbursts, shrill sounds

and occasional growling (Fig. 5.2 (b) ). Pain cries have clear and intense spectral

characteristics with peculiar brief inverted cup-shaped cry events (Fig. 5.2 (c)). Notably,

a transition of the sound type is observed from squeaky to growl effect, while studying

the cry behaviour for the infants ranging from neonatal stage through the infancy of over

9 months. The cases for strangers anxiety also have hyper-phonated (non-normal) sound

types along with similarly shaped (arched) cry events but are observed to be relatively

prolonged (Fig. 5.2 (d)).
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Figure 5.3: Illustration of differences in f0 contours of infant cries, evaluated using
auto-correlation function (ACF) and LP residual (LPR), for 4 different categories. (a)
Discomfort cry (monotonously flat con- tours), (b) Cry due to environmental changes
(flat contour with lesser fluctuations), (c) Pain cry (short inverted cup-shaped contours)
and (d) Cry due to strangers anxiety (prolonged inverted cup-shaped contours) [Please
observe changes in the arrow-marked regions in the f0 contours obtained using the ACF

(middle subplots)].

The variations in the cry acoustic signals are significantly higher, that are observed to

be induced also with the growing age, showing intense changes from 9 months on-wards.

Also, the presence of different sound types that make up a cry vocalization, induce

significant fluctuations in the acoustic characteristics of the signal. The experiments

conducted are upon the infants lying mostly between the age group of few days up-to 20

months. Also, at times the presence of different sound types can be crucial for analysis,

which is why they have been duly studied in this work.
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5.3 Characterization using Excitation Contour

5.3.1 Analysis using f0 contour

Firstly, the unwanted background noises are manually removed by performing silence

transformation of the noisy regions. The silence transformed cry signals are then ob-

served after the application of a voice activity detection algorithm [60] and marked in

red, as observed in Fig. 5.3 (i). This ensured that the analysis and processing is done

only for the parts contributing to the prominent cry regions. The short-time analysis of

the cry signal is performed by considering frame size of 30 ms and frame shift of 10 ms.

Due to the dynamic nature of the vocalizations within infant cry sounds, contours for

the discomfort cries induce moderate deflections, especially at the cry event onsets (Fig.

5.3 (a)). The fluctuations for the various cry sound types observed for environmental

changes as shown in Fig. 5.3 (b), are observed to be sparse due to their minimal transi-

tions. These are the 2 categories having relatively more stable (i.e. the one having less

average pitch deviation) cry melody contour. Pain cry bout contour (Fig. 5.3 (c)) brings

out the cyclic f0 fluctuations, also validating the spectrogram based observations men-

tioned as part of section 5.2. The dysphonated cry sounds like growling, squeaking, etc.,

can occur for this category too, but the core cry zone will have prominent arc-shaped

cry patterns that occur frequently, but briefly. With significantly intense f0 fluctuations

(in comparison with that of pain) as can be seen in Fig. 5.3 (d), stranger’s anxiety cries

produce relatively prolonged cry patterns.

From this analysis, peculiar acoustic and perceptual patterns have come forth as decisive

towards a high level distinction between the cries for different causes. The cry signals

with majority of the cry events having less contour deviation and more stability are

generally due to the causes that are not that severe in nature for instance, discomfort

and environmental change, whereas if there are arc shaped patterns (described above)

present within the core cry regions, it might indicate severity, like for the cases due to

pain or the presence of some stranger (stranger’s anxiety). The observations related to

excitation contour analysis are briefly enlisted as below:

• Discomfort cry has stable contour with moderately high (≈ 500 − 1000 Hz) fluc-

tuations.

• Environmental changes cry events have sparse f0 fluctuations.

• Pain cry has brief, frequent inverted-cup shaped spectral patterns varying over

100− 200 Hz.
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Figure 5.4: Acoustic features for in-
fant cry due to environmental change
[Spkr 60, Male, 19 months]. (a) sig-
nal, (b) Narrow-band spectrogram, (c)
f0 contour (using autocorrelation) [No-
tice flat contours in the arrow-marked

regions].

Figure 5.5: Acoustic features for in-
fant cry due to stranger’s Anxiety [Spkr
62, Female, 15 months]. (a) signal,
(b) Narrow-band spectrogram, (c) f0
contour (using autocorrelation) [Notice
inverted cup-shaped contours in the

arrow-marked regions].

• Stranger’s anxiety has gradually descending (> 2 sec) cry events with significantly

large (≈ 1500 Hz) f0 fluctuations.

• Cries having less deviations in the f0 contour, usually indicate a non-severe cause

category, like discomfort or environmental change.

• Cries having more and frequent deviations in the f0 contour indicate a severe cause

category, like pain or stranger’s anxiety.

There is significant development in the vocal chords and the cavity that induces lot of

changes in the cry acoustics. These manifest in the form of high fluctuations in the cry

melody and f0 contour. Although, the absolute size of the infant cry production system

is small as compared to that of an adult, and the resulting cry outbursts generally tend

to be brief in nature, the overall patterns do show some peculiarity in different situations.

It is during the non-severe crying cases, like the ones due to discomfort or environmental

change, that the melody and harmonic patterns during the core cry event are relatively

more stable (i.e. with less changes), whereas they are observed to be of frequent and

significant changes for the cases from more severe categories like pain and stranger’s

anxiety, occurring in the form of brief cry outbursts due to psychological reasons. The

analysis done and the patterns observed consistently reflect the characteristics of 66

samples analyzed, thus providing insightful inputs towards further exploratory work.
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Table 5.1: Quantitative analysis using parameters to measure melody contour char-
acteristics - (c) Average, (d) Std. Dev., (e) Normalised Std. Dev., of f0 and (f) Average

cry segment-duration for different cases of environmental change.

(a)
Infant
(M/F)

(b)Age
(Months)

(c) µf0
(Hz)

(d) σf0
(Hz)

(e) σNf0

(Hz)
(f) µdur
(sec)

S44 (M) 9 553.8 249.8 0.45 1.1

S30 (M) 11 348.8 193.7 0.56 1.2

S30 (M) 11 303.4 149.8 0.49 0.8

S70 (M) 12 539.1 199.5 0.37 0.7

S12 (M) 18 399.8 210.3 0.53 0.9

S60 (M) 19 573.6 329.5 0.57 1.3

S83 (F) 12 503.7 269.1 0.53 1.7

S78 (F) 20 428.1 224.8 0.53 0.9

S05 (F) 36 488.2 354.0 0.73 1.4

S59 (F) 44 516.8 342.2 0.66 1.0

Average 465.5 252.3 0.54 1.1

5.3.2 Analysis of variation in f0 contour

The input cry signals after removing the unwanted background babble noise are pro-

cessed post application of the voice activity detection. The prominent cry regions are

identified and processed accordingly. These cry regions are distinctly depicted in the

input signals in Fig. 5.4 (a) and 5.5 (a). Spectrogram is used for observing characteristic

spectral behaviour. This is a 512 point FFT’d short-time spectrogram with Hamming

window, and pre-emphasis factor of 0.97. The final sub-plot analysis is for the variation

in instantaneous fundamental frequency (f0) with time.

5.3.2.1 Distinguishing environmental change cries from stranger’s anxiety

cries

Our earlier observations from section 5.3.1 are further consolidated in terms of the f0

statistics in this analysis. Further comparative analysis for the categories environmental

change and stranger’s anxiety showed very subtle differences with respect to the same

features. For stranger’s anxiety, one significant difference based upon the patterns of

the cry melody contour is the presence of prolonged arch-shaped cry signal segments,

similar to the ones found within the pain cry cases, but relatively few. Hence, logically

the category average of the std. - dev. in the f0 contour for this category should be more

than that for environmental change, but the empirical verification suggests otherwise (see

Tables 5.1 and 5.2, column (d)). The reason could very well be the combined effect of
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Table 5.2: Quantitative analysis using parameters to measure melody contour char-
acteristics - (c) Average, (d) Std. Dev., (e) Normalised Std. Dev., of f0 and (f) Average

cry segment-duration for different cases of stranger’s anxiety.

(a)
Infant
(M/F)

(b)Age
(Months)

(c) µf0
(Hz)

(d) σf0
(Hz)

(e) σNf0

(Hz)
(f) µdur
(sec)

S26 (M) 6 322.7 187.5 0.58 1.1

S67 (M) 12 455.3 197.2 0.43 1.4

S70 (M) 12 519.2 297.4 0.57 1.8

S60 (M) 19 824.8 227.4 0.28 1.7

S79 (M) 24 417.8 160.1 0.38 1.6

S28 (F) 2 302.0 182.4 0.60 2.4

S87 (F) 6 567.7 402.6 0.71 1.0

S85 (F) 13 501.5 270.3 0.54 1.2

S24 (F) 13 305.9 157.7 0.52 1.9

S69 (F) 15 449.6 203.6 0.45 1.0

Average 466.7 228.6 0.51 1.5

different types of hyper-phonated (or non-normal) cry sounds that make up most of

the core cry segments present within the cry sounds available for environmental change,

along with the relative scarcity of the arch-shaped cry patterns in the case of stranger’s

anxiety. A comparison between these characteristics is shown for brief portion of cries

from both the categories in Fig. 5.4 and 5.5, leading to statistical analysis at the cry

signal segment level, observed from Table 5.1 and 5.2.

Presence of rising and falling contour shapes can be clearly seen from the spectrogram

for the stranger’s anxiety case considered here, as shown in Fig. 5.5, which is nearly

absent for the environmental change in Fig. 5.4.

The category average of the std. - dev. of f0 contour turns out to be lesser for stranger’s

anxiety as compared to that for environmental change, with very less deviation in the

case-wise values of parameter σf0 as shown in Tables 5.1 and 5.2. This solicits analysis of

highly localized melody contour patterns, when characterizing for these two categories.

5.3.2.2 Pitch range comparison

(1) Environmental change and stranger’s anxiety: The values obtained from the sta-

tistical analysis for various cases, suggest some insights. The minimum average

f0 for each case/file µf0 , for the categories environmental change and stranger’s

anxiety, as can be observed from Tables 5.1 and 5.2, are close enough and are ≈
303 Hz for both. But for the latter category, the maximum of this parameter can
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Table 5.3: Quantitative analysis using parameters to measure melody contour char-
acteristics - (c) Average, (d) Std. Dev., (e) Normalised Std. Dev., of f0 and (f) Average

cry segment-duration for discomfort cases.

(a)
Infant
(M/F)

(b)Age
(Months)

(c) µf0
(Hz)

(d) σf0
(Hz)

(e) σNf0

(Hz)
(f) µdur
(sec)

S55 (M) 9 (d) 391.7 169.5 0.43 0.6

S09 (M) 11 351.5 163.3 0.46 2.9

S57 (M) 15 541.3 216.1 0.40 1.3

S41 (M) 30 591.7 237.4 0.40 0.7

S34 (F) 7 288.5 154.7 0.54 1.4

S102 (F) 9 725.6 382.3 0.53 1.0

S16 (F) 9 329.4 175.8 0.53 1.3

S09 (F) 11 805.5 586.1 0.73 1.0

S29 (F) 12 762.1 465.1 0.61 1.0

S101 (F) 24 375.7 195.0 0.52 1.3

Average 516.3 274.5 0.53 1.2

go even above 800 Hz. This could be possibly be due to the subtle stimulation

at the beginning of the crying due to change in the external environment for both

the cases, resulting in similar average f0 at both category and case levels (see cat-

egory averages in Table 5.1 and 5.2), but the gradual intensifying of the anxiety

levels due to a stranger’s presence in case of stranger’s anxiety, tends to induce

significant changes in the characteristics like cry melody, pitch etc., as explained

previously with the help of Fig. 5.4 and 5.5, ultimately leading off to a high f0

contour.

(2) Discomfort and pain: The case-wise dynamic range of f0 for the discomfort turns

out to be ≈ 40 Hz below the corresponding values for the pain category, with

minimum/maximum deviations for both the categories as 154.69/586.11 Hz and

196.12/534.13 Hz respectively (Table 5.3 and 5.4). Such drastic extension of the

maximum f0 level for the discomfort category could be attributed to the different

types of the hyper-phonated cry sounds present within, whereas for the pain cry

cases, the increment appears to be significantly through normally phonated cry

sounds. This is validated from the respective average values, which when observed

with the help of the Table 5.4 for pain category, is well ahead than for the discom-

fort by more than 75 Hz (Table 5.3). Also, the normalized std. - dev. tabulated

as column (e) in the Tables above, clearly has pain with the highest value.
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Table 5.4: Quantitative analysis using parameters to measure melody contour char-
acteristics - (c) Average, (d) Std. Dev., (e) Normalised Std. Dev., of f0 and (f) Average

cry segment-duration for different cases of pain.

(a)
Infant
(M/F)

(b)Age
(Months)

(c) µf0
(Hz)

(d) σf0
(Hz)

(e) σNf0

(Hz)
(f) µdur
(sec)

S40 (M) 1 844.9 398.7 0.47 1.0

S25 (M) 4 324.5 534.1 1.65 1.4

S70 (M) 12 720.3 328.4 1.46 1.00

S39 (M) 13 673.3 268.4 0.40 1.00

S32 (M) 16 708.9 416.9 0.59 1.2

S73 (F) 1 627.0 248.7 0.40 0.8

S15 (F) 5 718.5 403.9 0.56 1.0

S14 (F) 7 480.0 196.1 0.41 1.3

S07 (F) 18 812.7 456.8 0.56 1.0

S38 (F) 18 670.7 384.8 0.41 1.0

Average 658.1 363.1 0.61 1.0

5.3.2.3 A perspective on cry duration

The comparison of the duration of the cry bouts, identified by the VAD does not reflect

any special characteristic distinctions. Since the average cry duration for cry-cause

categories environmental changes, stranger’s anxiety, pain and discomfort are obtained

as 1.23 sec, 1.02 sec, 1.09 sec and 1.50 sec respectively, as can be observed for the

average duration values (µdur) from Tables 5.1, 5.2, 5.4 and 5.3, column (f). The sharp

surge in the values for the first and last category is due to exceptional cases having

the average cry duration for each case (µdur) longer than the general trend, which is

either due to sustained cry signal segment or the clubbing of two consecutive cry signal

segments that are too close for the voice activity detection algorithm to distinguish.

5.3.2.4 Discussion

The relative cry intensity levels for the categories under focus can also be interpreted

from the perspective of the level of uneasiness the infant might be experiencing when

under their influence. For the category pain, the infant would want to get rid of the

unpleasantness developing within as early as possible. Resultantly, the cry sound pro-

duction will be through the system, the articulatory configurations for which would

regularly be in a state of conveying these intense associated emotions in various ways,

the acoustic effects of which would manifest as different crying patterns within a cry

signal, whereas for stranger’s anxiety, the zenith of the cry intensity within the cry
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Figure 5.6: Spectrogram illustrating intense spectral characteristics with uniform
distribution for pain cry, Spkr # 01.

bout, is not reached as early as for pain because of the time taken by the infant to get

over the perplexity due to external stimulations accompanied along with this category.

Categories like discomfort and environmental change cause an infant to stay perplexed

for a significant time, thereby not generating significant acoustic variations within the

melody of the cry sound.

Key observations

1. Cry segment deviation is more for pain than for discomfort by 88 Hz.

2. Cry segment deviation for environmental change is more than that for the stranger’s

anxiety by 23.65 Hz.

3. The minimum average f0 for both environmental change and stranger’s anxiety is

≈ 303 Hz, whereas its maximum reaches 800 Hz for the latter, suggesting more

intensity in its cry patterns.

4. Average f0 dynamic range for discomfort is lesser than that for pain by ≈ 40 Hz.

The key distinction here lies in the cry melody contours for the cry bouts of these

categories, which is reflected as greater category average of std. - dev. of f0 (σf0).

5. Average cry duration for all the categories is obtained to be 1.18 sec.

5.4 Characterization using Sub-band Spectral Energy

Short-time spectrograms of cry signals for categories pain, discomfort and environmen-

tal change, as shown in Fig. 5.6–5.8, depict spectral content across the spectrum for

the signals. Characteristic distinction can be observed in terms of the distribution of

this energy across the frequency scale. This drastic variation in the spectral energy is

observed in terms of sub-band spectral energy (SSE) ratios. This effect is described for

the categories under consideration as below,
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Figure 5.7: Spectrogram illustrating mild spectral characteristics with skewed distri-
bution for environmental change cry, Spkr # 60.

Figure 5.8: Spectrogram illustrating weak spectral characteristics with skewed distri-
bution for discomfort cry, Spkr # 55.

5.4.1 For pain cries

As can be observed from Fig. 5.6, the spectral energy for Spkr #1 appears to be

distributed uniformly throughout the signal spectrum, across the signal progression.

This results in higher SSE values for the higher band-based ratios. Sub-band spectral

energy ratios of IV w.r.t I and II sub-bands, i.e., (α1 and α2 are observed to be

significantly high as shown in Table 5.5, columns (h) and (i).

5.4.2 For cries due to environmental change

For this category, the presence of relatively lower sub-band spectral energy is visible

for higher frequency ranges as shown for Spkr #60 (Fig. 5.7). The overall spectral

energy appears to be less for higher sub-bands, as compared to that for pain category.

Hence, the energy ratios corresponding to IV sub-band (around 4 kHz) are higher than

that for the other bands, possibly due to the presence of higher resonant frequencies for

this category. The two sub-band spectral energy ratios (α1 and α2 are observed to be

moderately low as compared to that of the pain category, as can be seen from Table 5.5.
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Table 5.5: Average Sub-band spectral energies ((b)-(g)), for cries due to pain, discom-
fort and environmental change categories. The ratios of spectral energies as α1 = E4

E1

and α2 = E4

E2
are shown in (h) and (i) respectively.

(a)
Category

(b)
E1

(c)
E2

(d)
E3

(e)
E4

(f)
E5

(g)
E6

(h)
α1

(i)
α2

Pain .02 .11 .30 .59 .44 .30 39 6

Discomfort .03 .11 .38 .19 .21 .17 6 2

Environmental-change .02 .09 .28 .22 .14 .09 12 2

5.4.3 For discomfort cries

The sub-band spectral energies for the cries due to discomfort, like for Spkr #55, when

observed using the spectrogram showed that the energy is significantly less in the higher

sub-bands marked by 4, 5 and 6 kHz boundaries (Fig. 5.8). This behaviour can also

be examined from the SSE ratios (α1 and α2, for discomfort category from Table 5.5.

The values are observed to be significantly lower than those of the other 2 categories.

5.4.4 Discussion

Spectral energy in the higher frequency ranges of 4− 6 kHz (i.e., E4, E5 and E6) give

distinctive peculiarities for severe (pain) and non-severe (discomfort and environmental

change) cry-causes. The observations made using sub-band spectral analysis are summa-

rized in Table 5.5 and explained along with. Cries due to severe causes are observed to

have consistently higher sub-band spectral energies, whereas non-severe cry-causes have

lower sub-band spectral energies in the frequency ranges above 3000 Hz. This happens

possibly due to the insufficient phonatory activity during non-severe based crying, while

at the same time the infant being curious about the dynamics of the stimulus due to

physiological or environmental changes. On the other hand, for the cases due to severe

causes, the infant could better localize the source of suffering which for the pain induced

cry could be a physical injury for instance.



32

5.5 Characterization using Formant Frequencies

5.5.1 Different stages in infant cry vocalizations

Just as speech is composed of different linguistic units that build the language charac-

teristics, similarly an infant while crying tends to induce modulating effects, especially

in the middle of each cry bout, mostly for severe cases. 3 different stages of a cry bout,

commonly observed for a typical infant crying can be stated as below:

• Onset,

• Build-up, and

• Fading.

Cry onset is initiated by subtle vocal tract modulations, excited by varying amount of

the lung-pressure and excitation pattern. In the second stage i.e. cry build-up, the energy

and the formant frequencies are raised up which results in the cry intensity build-up to a

higher level. This is the core cry region, within which lies crucial cry information such as

infant’s psycho-physiological state, age, cry-cause severity, etc. Any leftover air-pressure

is released in the final stage, i.e., fading of cry.

Table 5.6: Average formant frequencies (F1 − F5 (in Hz)) for the 3 stages of infant
cries: Stage I-‘Onset’ ((b)-(f)), Stage II-‘Build-up’ ((g)-(k)) and Stage III-‘Fading’ ((l)-

(p)). Note that ‘Build-up’ formant frequencies are higher for severe cry category.

(a)
Category

Stage I - ‘Onset’ of Infant Cry Stage II - ‘Build-up’ of Infant Cry Stage III - ‘Fading’ of Infant Cry

(b) F1 (c) F2 (d) F3 (e) F4 (f) F5 (g) F1 (h) F2 (i) F3 (j) F4 (k) F5 (l) F1 (m) F2 (n) F3 (o) F4 (p) F5

Severe 1035 2184 3364 4839 6186 1314 2355 3528 5067 6262 1169 2270 3391 5023 6221

Non-severe 1050 2228 3469 5070 6112 1059 2065 3341 4912 5997 1018 2167 3434 4948 6137

Table 5.7: Average formant frequency differences (∆Fxy = Fy −Fx) (in Hz) for the 3
stages of infant cries: Stage I-‘Onset’ ((b)-(e)), Stage II-‘Build-up’ ((f)-(i)) and Stage

III-‘Fading’ ((j)-(m)).

(a)
Category

Stage I - ‘Onset’ of Infant Cry Stage II - ‘Build-up’ of Infant Cry Stage III - ‘Fading’ of Infant Cry

(b) ∆F12 (c) ∆F23 (d) ∆F34 (e) ∆F45 (f) ∆F12 (g) ∆F23 (h) ∆F34 (i) ∆F45 (j) ∆F12 (k) ∆F23 (l) ∆F34 (m) ∆F45

Severe 1149 1181 1475 1347 1041 1173 1540 1194 1101 1121 1632 1195

Non-severe 1177 1241 1601 1042 1007 1276 1571 1086 1150 1267 1514 1189

Table 5.6 and 5.7 show the formant frequencies and their differences respectively, av-

eraged for 10 severe and 6 non-severe cases. The average formant frequency values

F1 − F5 for the severe cry category in Table 5.6 are observed to be significantly high
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for Stage II (build-up stage) as compared to those from the other 2 stages (onset and

fading). Whereas no such increase is observed for non-severe cry-category (Table 5.6).

It can also be observed from Table 5.7, that the difference between 4th and 3rd formant

frequency values (i.e., ∆F34) is significantly greater than other ∆F values for both the

severe and non-severe categories for all the stages. The ∆F values for formants F1−F4

for non-severe cry category are consistently higher in each of the three stages of infant

cry bouts. The possible reason could be the prominent usage of front vowel based ar-

ticulator configurations like that for /i/, /I/, /æ/, and /ε/, for non-severe category cry

sounds.

5.6 Conclusion

Investigation of acoustic characteristics of infant cry signals, for different causes is done

by analyzing the excitation contour, sub-band spectral energy and variation in vocal

tract system characteristics over time. The analysis sheds light on key patterns and

acoustic trends present within different types of cry signals. It is with respect to these

characteristics that infant cries can be differentiated based on the severity their cause-

categories represent.

Investigation of production characteristics of infant cries is challenging due to minimal

deviation in the vocal tract shape. Hence, distinctive spectral characteristics are not

clearly perceived from formant frequency analysis for different cry-causes. However, the

average formant frequencies in the Built-up stage highlight the significant changes in the

system characteristics of severe category of cry-causes.

Due to the presence of significant dysphonation within cry sounds, the f0 estimation

becomes challenging. Although, a general idea about the behaviour of excitation source

characteristics of cry signals is obtained from the analysis done as part of this work,

but in-order to capture such characteristics reliably, a better representation parameter

needs to be evaluated. A parameter that can effectively capture the effects of alternative

source of excitation and a production system, the time-varying nature of which does not

affect the parameter estimation as much. This is in line with the evaluations involving

automated computation of cry parameters and recognition of patterns from cry signals,

towards different tasks.



Chapter 6

Infant Cry Sub-type Analysis

Infants cry due to different causes, in distinctly audible sub-types of cry sounds. These

cry sound sub-types are either strained or softly produced variants of sound types such

as growl, shrill, moan, etc., that can be present in any cry sound. These different cry

sound sub-types for severe and non-severe categories have already been introduced as

part of this work and shown schematically in Fig. 3.1. Growl and shrill being majority

of the cry sound types, are considered specifically in the current study. As a reference to

a study of such sub-types of cry sounds, Hirschberg [31], as noted earlier, has reported

the association of dysphonation sub-types like hollow, shrill and mew with different

pathologies. An illustration of differences in spectrograms for each of the cry-sound

sub-types growl and shrill cry is depicted in Fig. 6.1 and Fig. 6.2, respectively.

This chapter introduces different cry sound sub-types that are observed perceptually

and empirically, in the following section. It further proceeds to build-upon the empirical

observations, by characterizing these cry sound sub-types using formant frequencies and

short-time magnitude spectrums.

Figure 6.1: Spectrogram for growl cry sound [Spkr 7, Female, 18 Months].

34
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Figure 6.2: Spectrogram for shrill cry sound [Spkr 104, Male, 1 day].

6.1 Types of Infant Cries

Since most of the inpatients had their vaccination scheduled, one of the common reasons

for the crying response of the infants was regarded as pain, by the doctor. Pain cries

have been known to have peculiar acoustic characteristics; few notable ones are enlisted

below:

• Homogeneous vocalization

• Briefly rising contour at the onset of a cry event

• Gradually descending contour

• Brisk expiration

A reason for such acoustic manifestations could possibly be a temporary unbearable

change in the physical condition an infant’s body is subjected to, which the child intends

to get rid of as soon as possible. This makes the infant cry out in various kinds of ways

(some enlisted above), nevertheless all in brisk succession. Empirical evidences suggest

that while sometimes occurring in rhythmic patterns, the cries vary significantly with

age. The rationale here could be the various tendencies that tend to build up over

time within the human psyche. Some peculiar kinds of cry sounds observed from the

qualitative analysis of the cry data-set IIIT-S ICSD2, along with the categories they

appear with are briefly stated below,

• The clear cry voicing sound that gives distinct periodicity and well defined har-

monics (mostly belonging to pain).

• Shrill is a whistle like sound. Following 2 sub-types have been observed:

– Soft shrill cry is where we find the formant frequencies, but with lack of clear

harmonics (found with the environmental changes).
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Table 6.1: Formant frequencies (F1 − F5) for different cry sub-types, for severe and
non-severe categories, respectively.

(a) Cry
Sub-type

Formant values (g)
Category(b) F1 (c) F2 (d) F3 (e) F4 (f) F5

Growl (Strained) 1506 2421 3490 5076 6187

SevereShrill (Strained) 1415 2087 3481 5027 6185

Average 1461 2254 3485 5052 6186

Growl (Soft) 996 2090 3004 4432 5098
Non-
severe

Shrill (Soft) 1079 2313 3603 4964 6134

Average 1037 2202 3303 4698 5616

– Also, there is loud shrill, when the pitch and spectral energy is high.

• Cry shout is when there is a distinct loud shout mostly produced as an outcome

of strong pain.

• There is a series of brief, brisk expirations (mild variants reported for the onsets

of cries due to environmental change).

• Growly cry is a roar like sound having too much varying f0 due to hyper-phonation.

• Squeaky sound that an infant produces occurs mostly in conjunction, as the fol-

lowing variants:

– Normal, high pitched squeaky sound,

– Semi-strained squeak, and

– Fully-strained squeak.

• Moan cry is where a soft moan sound is heard. This voice can usually be heard

at the ending of a cry session. It is just a weaker cry sound, having low f0, low

energy and formant frequencies similar to that of a normal cry.

In this work, cries due to a particular reason may be referred to by their category names

for simplicity. Like for cry due to pain, we will have the terminology pain cry, unless

stated otherwise. Also, cries other than normally voiced ones (like shrill, growl, squeaky,

etc.) will be collectively referred to as non-normal cries.

Growl cry sounds have spectral energy scattered over a wider frequency range (Fig.

6.1), whereas shrill cry sound sub-types have it more concentrated at sparse harmonics
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Figure 6.3: Short-time magnitude spectrum comparison for four different types of
regions ((a)-(d)) observed in a cry signal.

(Fig. 6.2). It can be inferred from these figures, that first two formants occur in close

proximity with each other for growl cry sounds (Fig. 6.1), whereas formants occur in

well-spaced manner for the shrill cry sub-type (Fig. 6.2).

6.2 Characterization using Formant Frequencies

Average formant frequencies (F1−F5) are given in Table 6.1 for different cry sub-types.

F1 is observed to be comparatively higher for strained growl sound (for severe cry cat-

egory) and soft shrill (in non-severe cry category). Notably, the average F1 − F5 are

highest for growl (strained) cry sub-type. Whereas, all formants F1 − F5 have higher

values for shrill (soft) cry sub-type in non-severe cry category. Moreover, the formant

frequency ranges observed for different cry sub-types imply the dynamic behaviour of

the vocal tract configurations during cry sound production, especially during the dys-

phonations.

6.3 Characterization using Short-time Magnitude Spec-

trum

Based upon the spectral cues of the transition events for 10 different cases, some depicted

in Fig. 6.1 and 6.2, analysis using frequency domain characteristics lead to some sig-

nificant understanding towards characterization of different regions within a cry signal.

As can be observed from Fig. 6.3, depicted are the short-time (25 ms) magnitude spec-

trums of cross-talk, normal crying, growl hyper-phonation and shrill hyper-phonation

crying regions, in the respective sequence from left to right. Fig. 6.3 (a) has typical

noise-like spectral characteristics, with relatively lower spectral energy along with no

definite pattern of the frequency content. On the other hand, the spectrum for the nor-

mal crying, shown in Fig. 6.3 (b), as expected has definite harmonics with frequency

peaks equally spaced by 562 Hz. Also, it has relatively higher average spectral energy.
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Notably, the spectrum also exhibits the structure for the resonant frequencies, indicat-

ing the production characteristics of an infant instead of any other system. Fig. 6.3

(c) shows the spectrum of the growling region in a cry. This is marked by more spec-

tral energy, structure depicting the resonant frequencies and non-definite patterns of

harmonics. Whereas, shrill hyper-phonation is the sub-type with well-defined harmonic

structure and characteristic high-frequency excitation. As can be seen from Fig. 6.3 (d),

the harmonics are corresponding to 1782 Hz f0. Such distinctive spectral behaviour of

different cry regions can be insightful towards performing distinctive characterization,

of cry sub-types, hence of different cry types.

6.4 Conclusion

The analysis of cry signals elucidated dynamic nature of the cry production characteris-

tics representing excitation source and system. The vocalization exhibits highly varying

trends in the spectral energy, f0 contours, signal energy, etc., during the production of

various crying sounds sub-types. Most common sub-types of cry sound observed during

the analysis are growl, shrill and squeak. Also observed along with are the soft/strained

variants of each of these.

The average formant frequencies F1 − F5 are observed to be higher for severe cate-

gory with both growl and shrill being strained variants. Short-time spectrums are also

observed to divulge prominent patterns for background cross-talks, normal crying and

strained/soft variants of growl and shrill. The distribution observed is in terms of spec-

tral energy, harmonicity, formant structure, etc. Wherein, for sounds like normal crying

and shrill, prominent periodicity within spectral peaks is observed.

It is not just the peculiarities observed within the cry signal characterization of these

sound sub-types, but also the correlation of their intensity with the growing age that

renders their analysis crucial towards examining infant cries.



Chapter 7

Broad and Fine Classification of

Infant Cries using CNNs

Infant cries are vocalized signals where the vibrating vocal fold characteristics embed

essential voice quality related to different factors. The proposed approach attempts

to classify the infant cry signals within broad and fine classes based on their causes.

The data-set used for the current study is the same IIIT-S ICSD2, curated further

towards evaluating machine learning based classification systems. We examine the cry

signal characteristics for various causes at different level of categorical granularity. As

an example of the perceptual observation, the cries for causes in severe classes are

observed to exhibit longer duration and higher signal energy. A classification within

these broad classes is attempted based on feature–set derived from the spectral analysis

of cry signals. A feature set derived from the fundamental frequency contour, sub-band

spectral energy and MFCC values along with their gradients is derived as parameters to

train a support vector machine (SVM). The proposed features are tested individually,

and as a set, for their ability towards the classification of the two classes. A comparison

in the classification performance of the proposed parameter set is made with a MLP

system.

A further classification is attempted for finer causes of infant cry in the severe class. The

spectral features are used over a SVM to classify between the cry signals caused by pain

and stranger’s anxiety classes. The results motivate the employment of a classifier with

the ability to capture intricate characteristics of the signal. A CNN based architecture

is therefore used for classification using the raw signal. In a CNN based end–to–end

classification, learning each step is done in a simultaneous manner, keeping all other steps

and the final task in account. End–to–end architectures have recently been utilized for

several applications related to fields of automatic speech recognition, gender detection,

39
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Figure 7.1: Illustration of first convolution layer processing and network structure
[In: input; C-M L: convolution, max-pooling layer; FCL: fully connected layer; OL:

output layer].

children speech recognition and speech pathology detection [61–64]. These systems are

efficient towards learning an optimal windowing and spectral processing along with the

features and the classifier for a specific task. An improvement of the classification

is achieved using the source representation of the cry signal obtained using the zero

frequency filtering (ZFF) based method.

7.1 CNN-based Raw Waveform Modeling

We adopted the CNN-based raw waveform modeling approach that was first developed

for speech recognition, and later scaled to other tasks such as, speaker verification,

gender recognition and depression detection. In this approach, the network architecture

consists of N convolution layers (with max-pooling and ReLU) followed by one hidden

layer based multilayer perceptron (MLP). During training, both the CNN and MLP

parameters are trained by minimizing a cost based on cross entropy in an end-to-end

manner. During testing, the output class probabilities are averaged over the utterance

to make the final decision.

Figure 7.1 illustrates the first convolution layer processing with nf filters. It takes as

input signal of length wseq samples and processes it with a frame size (kernel width) and

frame shift (stride) of kW and dW respectively.
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Figure 7.2: Illustration of implementation with different input types.

7.1.1 CNN input

We investigate two types of input: (i) raw signal and (ii) zero frequency filtered (ZFF)

signal. The approach is also depicted in the Fig. 7.2. The latter input type is motivated

from the fact that in speech there exists an excitation component. In baby sounds,

modeling these information could be beneficial, as infant cry is characterized by high f0

values which keeps changing abruptly [11].

7.2 Experimental Setup

7.2.1 Classification in Broad Classes

The parameters derived from spectrum consist of mean of f0 (µf0), standard deviation

(σ) of f0 (σf0), sub–band spectral energies (Se), MFCCs (M), σ in MFCCs (σM ), differ-

enced MFCC (∆M), and σ in ∆M (σ∆M ). These parameters are derived over a duration

of 30 ms with a shift of 10 ms. The Se values are obtained in a band of 1 kHz in the

range of 0–6 kHz. The parameters obtained from severe and non–severe classes are used

to train a SVM using Gaussian kernels. A combined performance of all these parameters

together is also examined using the SVM, and is further compared with a single layer

MLP. The performance is also compared with end–to–end CNN architecture trained

over raw signals and ZFF. The CNN uses the input segment sct = {st−c . . . st . . . st+c}
at time t, along with a context spanning around 2c frame, to learn parameters. An

initial learning rate of 0.1 is used and the network is trained over a minimum of 40

epochs. Stochastic gradient descent (SGD) technique is used for learning weights, with

a momentum factor of 0.5. Implementation of the architecture uses Keras libraries with

Tensorflow back–end, with 4 convolution layers. The training uses a kernel width (kW )

of 16 along with a context, to result in an overall dimension corresponding to 250 ms,

at a shift of 10 ms.
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7.2.2 Classification in pain vs. anxiety causes of infant cry

A set of MFCC and its gradient ∆M , along with the σM and σ∆M values, obtained

across a window length of 30 ms for cry signals corresponding to pain and stranger’s

anxiety classes, are used to train a SVM with Gaussian kernels. The classification results

are also compared with the results obtained over MLP with a hidden layer, using the

same parameters. To improve on the classification results, an end–to–end architecture

is trained over raw cry and ZFF signals. The ZFF method involves filtering the speech

through an ideal digital resonator centered at 0 Hz [51]. Application of the filtering

results in a polynomial type growth trend in the output signal. The filtered signal

therefore has to be trend removed across duration of the approximate pitch period to

obtain the ZFF signal. An ideal trend removal process requires a good estimate of

pitch of the signal. The ZFF signal is a good representation of the speech source and

carries information related to voice quality, emotions, and other para–linguistic elements

[65, 66]. Representation of cry signals based on parameters derived from the spectrum

is not adequate due to rapidly changing fundamental frequency and other production

characteristics in the signal. The broad classes as well as the finer classes classification

is attempted using a 4 layer CNN architecture with kW=16 and kW=300.

Table 7.1: Classification between severe and non–severe classes using spectral param-
eter set SF .

Features Precision Recall F -1

µf0 and σf0 0.7 0.7 0.7

Se 0.6 0.68 0.63

M 0.98 0.98 0.98

σM 0.97 0.97 0.97

∆M 0.93 0.93 0.93

σ∆M 0.98 0.98 0.98

Average 0.86 0.87 0.86

7.3 Results

7.3.1 Broad and fine class classification

The spectral features set SF = {µf0 , σf0 , Se,M, σM ,∆M,σ∆M} is obtained for the given

data-set. A SVM is trained over each of these parameters and the results are given in

the Table 7.1. The results show that MFCC and its derivative, along with their mean

and variance values give a good classification score. Source features as the µf0 and σf0 ,

or the sub-band spectral energy ratio do not lead to a good classification performance.
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Table 7.2: Classification between severe and non–severe classes of infant cry causes.

Features Architecture Precision Recall F -1

SF SVM 0.97 0.97 0.97

SF MLP 0.96 0.96 0.96

Cry signal CNN (4-L) 0.99 0.99 0.99

ZFF signal CNN (4-L) 0.99 0.99 0.99

Table 7.3: Classification between pain vs. anxiety causes of infant cry.

Input Architecture Precision Recall F -1

MFCC SVM 0.94 0.95 0.94

M,σM ,∆M,σ∆M MLP 0.78 0.78 0.78

Cry signal
CNN (kW = 16) 0.77 0.76 0.75
CNN (kW = 300) 0.76 0.76 0.76

ZFF signal
CNN (kW = 16) 0.99 0.99 0.99
CNN (kW = 300) 0.98 0.98 0.98

The set SF is also employed to train the SVM for the broad class classification task,

to examine the performance of all the spectral parameters in tandem. The set performs

close to the results obtained using parameters M and σM . A comparison in classification

performance is also attempted using a single layer MLP trained over the set SF . The

results, as shown in Table 7.2, suggest that the set SF gives similar performance with

SVM and MLP systems.

The classification within the broad classes is also attempted with a 4–layered end–

to–end CNN architecture, with raw cry as input. The training is carried out over a

sub-segmental duration with kW=16. The network results in a good classification of

99%, which is better than the parameter set SF , given in Table 7.2. The proposed

method also uses the source representation obtained using ZFF as input to the CNN

architecture. The ZFF input signal also results in a high classification as from the raw

signal input.

The task of classification between finer causes of infant cry, such as pain and stranger’s

anxiety, is also attempted. A set of spectral parameters {M,σM ,∆M,σ∆M}, obtained

over a duration of 30 ms, are used in an MLP architecture, to classify within these classes.

A classification score of 78% is obtained. MFCC features gave a high performance in

discriminating broader classes of causes of infant cry. A SVM trained on MFCC for the

task of classification within the pain and stranger’s anxiety classes gives a score of 94%.

Table 7.3 shows these results. The classification is further attempted using a 4–layered

CNN architecture, with raw cry and ZFF signal as input. The scores obtained over the

CNN network show a significant improvement in performance.
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Figure 7.3: Gross spectral response
obtained from first layer of CNN

trained over ZFF signals.
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Figure 7.4: Gross spectral response
obtained from first layer of CNN

trained over raw cry signals.

The network with ZFF signal as input gives a higher performance (F–1 = 99%) than

raw cry (F–1 = 76%). This reinstates the ability of the ZFF to capture the vocalization

characteristics which differentiates between the cry signal behaviour based on the factors

causing it. Changing the kW from 16 to 300 does not alter the performance significantly,

which shows that the CNNs are able to capture the context related information while

learning representations from a smaller segment.

7.4 Analysis

The raw cry and ZFF signals give similar performance for the classification task for

broad categories. This shows that the classes are distinct in their source and system

behaviour. This, as tabulated in section 5.5.1, Table 5.6, corroborates the observations

about the prominent variations in the formant frequency values within a build-up stage

of a crying bout. Further experiments attempt to classify the finer classes within the

severe causes of infant cry, i.e. pain vs. stranger’s anxiety.

The first layer in the CNN acts as a band of filters which help in learning an appropriate

representation of the input for the classification purpose. An average of the coefficients

of all these 128 filters represents a gross spectral response which is being learned by the

network as parameters. The parameters are specific to the network architecture and the

classification task.

Figure 7.3 and 7.4 show the gross spectral response obtained from the first layer of filters,

from 2 layered end–to–end CNN architecture trained over ZFF and raw cry signals

respectively. The underlying evaluation is pain vs. stranger’s anxiety classification. The

response from the network trained over ZFF, shown in Fig. 7.3, shows a high emphasis to

frequency components around 1.3 kHz, along with moderate emphasis on components
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Figure 7.5: Speech, ZFF and spectrogram obtained using ZFF for infant cry segment,
caused due to pain.

around 3, 5 and 7 kHz. Similarly, the response learned by the CNN trained over cry

signals has a prominent peak around 3000 Hz.

An ideal zero frequency signal is expected to contain components only in the vicinity

of 0 Hz, and therefore the presence of the higher frequency components in significance

raises concerns. This phenomenon can be attributed to the fact that the trend removal

in ZFF is not optimal, which results in a presence of high-frequency components in the

ZFF spectrum. Figure 7.5 shows this characteristic for a segment of cry signal with

the help of the short time spectrogram which reflects presence of significant components

between the frequency range 500–1500 Hz. The spread of spectral energy can be seen

across the 0–1.5 kHz band in the spectrum. The rapidly changing characteristics and

pitch with high value makes it difficult to estimate an optimal duration of the trend

removal window in ZFF, which introduces discontinuity in the filtered signal. The gross

spectral response is characteristic to the input, network and the task, and varies for a

difference in these entities. A similar network trained across adult speech signals for the

task of depression detection exhibits a distinct gross spectral response of the filters in

first layer [64]. The importance of the spectral feature representation learned in the

first layer of CNN network is further verified by boosting the significant components

obtained from gross filter response in the input signal. Using the response shown in

Fig. 7.3, we design 1–pole and 3–pole resonators, with the location and 3 dB bandwidth

estimated from the same response. These resonators are shown in Fig. 7.6 and 7.7. Two

resonator systems are designed centered at the first (1300 Hz), and first 3 dominant

peaks (1300, 3100 and 7100 Hz), to train the network using the input as ZFF signal
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put ZFF signal.
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Figure 7.7: One pole and 3 pole res-
onator systems designed to filter the in-

put cry signal.

Table 7.4: Performance of filtered signals towards classification of pain and stranger’s
anxiety cry sounds.

Input Filter Precision Recall F -1

ZFF 1 pole - ZFF net 0.92 0.91 0.91

ZFF 3 poles - ZFF net 0.96 0.96 0.96

Cry 1 pole - Cry net 0.76 0.75 0.74

Cry 3 poles - Cry net 0.76 0.76 0.76

filtered to boost the significant component, as shown in Fig. 7.6. Similar resonators are

designed corresponding to the response obtained from the network trained over raw cry

signals, and are plotted in Fig. 7.7.

The ZFF signal filtered using the two corresponding resonator systems are used to train

the network which give a close yet lower classification performance for the input, as given

in Table 7.4. An increase in performance from 92% to 96% is seen when increasing the

prominence of first 3 spectral components as compared to one is performed. A similar

case is seen for network trained on raw cry signals

7.5 Conclusion

The task of classifying infant cries for different causes is examined by evaluating con-

ventional acoustic features and alternative source representations in this work.

The spectral features set SF combined, when evaluated using SVM gives good classifi-

cation accuracy of 97 %. Features based on MFCCs alone are observed to characterize

acoustic properties within cry signals belonging to severe/non-severe categories with

good classification accuracies up to 98 %. MFCC based features when evaluated for
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classifying between finer categories, pain and strangers anxiety give relatively lower F–1

scores of 94%.

End-to-end learning and classification approach when evaluated over raw cry and ZFF

signals are observed to give most optimal performances both at broader and finer level

categorization, with best F–1 scores of 99% obtained for each task. The good perfor-

mance of 99% from both raw cry and ZFF signals indicate the distinctive characterizing

capacity of both source and system components within cry signal, towards classification

with causes at broader level, whereas the efficacy of source representation, i.e. ZFF is

established when classification is performed between the categories at the finer level.



Chapter 8

A Modular Approach towards

Learning Baby Sounds

Classification using CNNs

The present study focuses on the baby sound sub-challenge of the INTERSPEECH

2019 Computational Paralinguistics ChallengE (ComParE). Towards that, we focus on

developing neural networks based raw waveform modeling methods. Speech technology

mostly is based upon the fundamentals of speech production mechanism of an adult. In

contrast, the proposed approach does not make such assumptions and tries to learn the

relevant features from the signal directly.

We investigate two approaches, namely,

1. Monolithic approach: In this approach a single classifier is trained to classify the

five sound classes in the data set.

2. Modular approach: In this approach we decompose the classification problem into

sub-classification problems. More precisely, we group the five classes into different

categories; build sub-classifiers; and finally combine their outputs to predict the

sound class.

The modular approach is motivated by the fact that baby sounds tend to exhibit high

degree of variability. Furthermore, the amount of the data available is low. So, it is

difficult to learn an invariant feature to discriminate all classes through a single end-

to-end classifier. Our investigations show that the end-to-end learning/classification

approach performs well for a different data-set of infant/baby sounds too, when evaluated

48
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Table 8.1: Confusion matrix among all 5 classes with raw speech/ZFF as input.

Target

Predicted
Canonical Crying Junk Laughing Non-canonical

Canonical 136/86 3/4 93/104 0/0 146/184

Crying 0/3 45/34 21/28 0/0 97/98

Junk 40/34 9/9 1060/1046 0/0 248/268

Laughing 7/7 0/1 12/22 0/0 22/11

Non-canonical 63/83 83/70 345/368 1/0 1186/1157

over the sub-modules of the modular approach. Modular approach leads to better sub-

systems towards classifying sounds from all the 5 classes.

8.1 Preliminary Analysis

During training, we follow five-fold cross validation process, where the training data is

split into five parts, four parts are used for training and the fifth part is used as cross

validation data for early stopping. This results in five classifiers. During testing, we first

average the output probabilities per frame across five classifiers and then average across

the utterance to make the decision.

8.1.1 Monolithic approach

The monolithic approach uses raw signals modeled by the CNN based architecture for

the task of 5 class classification. It can be observed that raw signal lead to better system

than ZFF. When compared to the baseline systems, the monolithic approach leads to

inferior system on the development set. Performance of the raw waveform or the ZFF

signal as input is low compared to the baseline provided with the ComParE challenge

results, which is 0.54, obtained using compare feature-set along with SVM.

Table 8.1 presents the confusion matrix for the two systems. The counts A/B denote

A for raw signal based system and B denotes for ZFF signal based system. It can

be observed that in both cases, the classification is high for most frequent classes in

the training set i.e. junk class and non-canonical class. In both cases, laugh is never

detected.
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Table 8.2: Unweighted average recall (UAR) for classifiers built over different modules
for baby sound classification task.

S. # Task details UAR (Cry) UAR (ZFF)

1 Junk vs. all other classes 0.77 0.77

2 Canonical vs. non-canonical 0.69 0.65

3 Crying vs. Laughing 0.64 0.77

4
Crying and Laughing vs.

Canonical and Non-canonical
0.57 0.52

5 Junk vs. Crying and Laughing 0.72 0.74

6 Junk vs. Canonical and Non-canonical 0.77 0.78

7
Junk vs. Crying and Laughing vs.

Canonical and Non-canonical
0.56 –

Average 0.67 0.71

Figure 8.1: Proposed modular architecture towards baby sound classification task.

8.2 Results and Analysis

The classes in the training set are grouped towards a divide and conquer approach to the

classification problem. The groups are determined by the acoustic content of the classes

which can be exploited for an optimal classification. For instance, a comparison of the

canonical vs. non-canonical shows that a good classification rate can be achieved by

using cry signals, that helps in modeling both source and system characteristics, present

in these categories (see Table 8.2).

8.2.1 Modular approach

The classification task is divided in smaller modules based on the behaviour of signals

to improve upon the performance of the monolithic approach. Table 8.2 gives the clas-

sification results between different modules, obtained by training 7 different classifiers,

depicted schematically in Fig. 8.1. All the classifiers are 4 layered CNN architectures

followed by a MLP classifier, and the classification results are interpreted in terms of
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Table 8.3: Confusion matrix among all 5 classes with inputs as per the modular
approach.

Target

Predicted
Canonical Crying Junk Laughing Non-canonical

Canonical 158 4 80 2 134

Crying 2 45 19 0 97

Junk 57 14 1021 0 265

Laughing 7 2 15 0 17

Non-canonical 99 63 280 2 1234

unweighted average recall (UAR) values. A module includes one or more classes grouped

as a set to be classified against another set. Decision about the groups is arrived based

upon the type of signal within a class. The junk class, for example, comprises mostly

of ambient noise, and background babble, which is entirely different from other classes

which contain different aspects of the baby sound. The junk class can therefore be clas-

sified easily against all other classes together. Hence, the classifier #1 performs this task

with both cry and ZFF signal as the input, which suggests that either just speech source

or that along with system characteristics are predominant in the group with all 4 classes

when compared to junk. Crying and laughing classes comprise of non–speech signals,

which are para–linguistic characteristics in the sound. Canonical and non-canonical

classes comprise of sounds uttered as speech. The two classes are best classified using

the raw speech input signal which gives a classification accuracy of 69% for the classifier

#2. Using the ZFF signal gives a lower classification rate which shows that discrimi-

nating these classes will also require the knowledge of production system, than just the

source characteristics. A good discrimination of 77% is achieved between the crying and

laughing classes using the ZFF signal, for the classifier #3. Interestingly the network

trained towards classifying crying vs. laughing is trained by freezing the initial 4 layers

as that from the prior experiment on pain vs. strangers anxiety classification. This not

only helps obtain good classification scores for cry vs. laughing experiments, but also

establishes the significance of the spectral components that the CNN learns towards the

task of classifying pain and stranger’s anxiety cries. Similarly, the performances of other

classifiers also can be compared for both the input types from Table 8.2. For classifier

#7, the evaluation was done only using cry as input type, considering the presence of

categories canonical and non-canonical in the task.
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Table 8.4: Comparison of performance for different approaches towards baby sounds
classification.

Approach UAR

Monolithic (raw) 0.41

Monolithic (ZFF) 0.38

Modular 0.44

Baseline 0.54

8.2.2 Analysis

The confusion matrix observed from the modular approach shown in Table 8.3 is not

that different from the one observed from the monolithic approach shown in Table 8.1

for cry input based system. The confusion for classes canonical and non-canonical is

observed to be slightly reduced, with increase in their true classification count for the

modular approach. The confusion induced for the class laughing, as observed from

both the Tables, indicate possible rationality in terms of the predictions made. Most of

the predictions are done in favour of classes junk or non-canonical, which the laughing

category could possibly have common characteristics with. Whereas, canonical and

crying categories have peculiarities with respect to the articulatory variations and signal

energy respectively, that laughing sounds severely lack. Category specific generalization

could better be achieved for laughing with availability of sufficient training samples.

This brings out the importance of such an approach where different input types are used

towards training several task specific end-to-end CNN based classifiers, since no single

system is observed to be doing the job well.

The UAR scores from different experiments following monolithic, modular and challenge

baseline approaches are compared and the results are shown in Table 8.4. Although very

slight, but an improvement of 3 % in the UAR score is observed from the monolithic

to modular approach. These results are still below the baseline scores 54 %, which is

reported for the system evaluating compare features with an SVM.

8.3 Conclusion

In this work, the approach of end-to-end learning and classification using a convolutional

neural network is implemented to attempt classification of baby sounds into multiple

categories, which are significantly different in terms of their acoustic contents. The

data-set used for the multi-class classification task is a collection of different types of

baby sounds, obtained as part of INTERSPEECH 2019 baby sounds sub-challenge.
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Two approaches involving end-to-end CNNs, monolithic and modular approaches are

examined towards multi-class classification. Monolithic approach involves classification

of baby sounds into 5 pre-defined classes using a single CNN. A modular approach is

designed to divide the problem into smaller sub-problems of classifying baby sounds

into categories defined from the given category-set, based upon the signal content the

categories represent. As against the usage of a single input type of either raw cry or

zero frequency filtered signal, for monolithic approach, the input in modular approach

is decided based upon the signal content, the categories involved in an experiment rep-

resent.

Junk category is observed to be best represented by ZFF signals. The canonical and

non-canonical categories, representing sounds that have subtle signatures of evolving

speech characteristics are optimally characterized using raw cry signals. Raw cry signal,

which consists information of both excitation source and system characteristics and

therefore effectively helps with the classification into these categories. Laughing and

crying category sounds are optimally classified using the ZFF representation of the cry

signal. The performance of this sub-system is observed to increase significantly, when

the knowledge learned from the other similar tasks like for pain vs. stranger’s anxiety

classification, for infant cries, is transferred for its training purpose. This effectively

establishes the significance of the spectral cues learned by a CNN trained to classify

cries between different causes.

The confusion reported from the performance of the experiments in this work is observed

to be least for the categories that have significantly high count of training data i.e., junk

and non-canonical, followed by canonical and crying categories, those have relatively

higher classification confusion. Laughing category sounds could not be classified when

evaluated as part of the overall multi-class classification setup, by any approach examined

in the work. A prominent reason being significantly scarce data for this category. An

approach like end-to-end classification, that critically depends upon the availability of

sufficient per-category training data, is not able to achieve results comparable to that of

the base-line that effectively evaluates a comprehensive set of 6373 static features, with

SVM. The performance obtained from the modular approach is observed to be better

than that for monolithic approach by 3%, but is still significantly below the sub-challenge

baseline score of 54%. Nevertheless, additional pre-processing of the baby-sounds along

with increasing the training data for laughing category could possibly help make the

systems performance comparable to that of the baseline system.
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Summary and Conclusion

In this manuscript, acoustic characteristics of infant cry sound production are explored

for the characterization of the cry-causes and different cry sounds sub-types, along with

evaluation of automated crying/vocalization type recognition. Such insights could be

useful in further analyzing acoustics in para–linguistic and non-verbal sounds. Significant

differences are observed between the acoustic features for severe and non-severe cry-

cause categories along with the ones at the finer level of categorical granularity, using

f0 contour, sub-band spectral energy ratios and formant frequencies F1 − F5. Cry sub-

type characterization proposed here may be useful to extract information such as age,

pathological conditions and cry-cause severity. An attempt is made towards deriving

insights into the cry-cause categories and cry sound sub-types, using a constrained data-

set.

Evaluation of automated infant vocalization cause/category recognition systems has

been done by first assessing spectral features based on f0, sub-band spectral energy and

MFCC and their derivatives. The classification performance for discriminating severe

and non-severe cause cry sounds, is observed to be good for MFCC and their derivatives

when evaluated using SVM and multilayer perceptron, with 0.98 and 0.96 F -1 scores

respectively. Their performance drops down to 0.94 and 0.78 respectively when the

classification is examined at the finer level of categorical granularity, i.e., for pain and

strangers anxiety. A relatively recent approach of end-to-end learning and classification

using CNN is evaluated for the same tasks. As inputs, raw cry and zero frequency filtered

signals are used. An overall improvement in the classification performance is observed.

Good F -1 scores of 0.99 each, for the CNN evaluated over the raw cry and ZFF signals for

classifying severe and non-severe cries are obtained. Whereas, this approach is observed

to yield comparatively better for pain vs. stranger’s anxiety classification with 0.99 F -1

score as compared to that from spectral features, with conventional machine learning

54
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or MLP based techniques. As against the conventional approach of first deriving hand-

crafted features and then performing classification, the approach of learning suitable

acoustic descriptors and classifying, in tandem, is found to help model the characteristics

that represent a highly varying entity of a signal as that of an infant’s vocalization.

The approach of end-to-end learning using a CNN is also implemented to assess the task

of classification of baby sounds into categories canonical, crying, junk, laughing and

non-canonical. A monolithic approach that implements a CNN in a manner same as

implemented for the cry-cause classification tasks is explored. Another approach called

modular approach that requires division of the 5-class classification task into sub-tasks

with lesser categories, followed by a common training of an MLP towards the 5-class

classification is also comparatively examined. The modular design of these classification

tasks and their corresponding inputs are based on the type of the acoustic contents

different categories represent. For instance, canonical and non-canonical represent cat-

egories having speech-like traits in the sounds. Whereas, crying and laughing do not

involve significant articulatory variations. Instead, they are mostly characterized by

highly varying, primary and alternative excitation patterns, which are effectively cap-

tured by the zero frequency filtering. Modular approach is observed to serve the purpose

better with 0.44 unweighted average recall (UAR) as compared to 0.41 in case of mono-

lithic approach. Although, significantly lesser than the baseline UAR of 0.54 reported

in the challenge paper, a slight improvement in the classification scores using modu-

lar approach over the monolithic approach suggest its effectiveness in cases where one

approach/input type-based solution does not suffice for an optimal performance.

The implications for the utility of such technology are of immense value. Early detection

of the medical conditions of infants in cases where its not that simple to know the cause

can be crucial for a better health-care. Thus making communication between an infant

and his/her surrounding more meaningful. The infant cry analysis needs to happen for

the data which is sufficient and as real-time as possible, specifically for the categories

like ailment or hunger/thirst, where the data-set is hard to procure. A solution could

be crowd-sourcing of real-time cry data collection by having parents/guardians record

cries of their babies with the help of a mobile app and comprehensively annotate it.

The analytical observations made in this work still need better validation checks, cor-

responding to more reliable ground-truth based infant cry data-set. The aspects of cry

acoustics discussed in this work along with better and larger data-set, especially that

involving multiple recordings by same infants over multiple sessions and for different

causes could help provide better insights for studies concerned with excitation source

and production system characteristics of infant cry sound, while accounting subtle nu-

ances crucial for the tasks related to cry sound recognition for cause based analysis.
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List of Publications

The following is the list of publications that are written based on the research work

done.

1. Shivam Sharma, P. Viswanth and Vinay Kumar Mittal, “Infant Crying Cause

Recognition using Conventional and Deep Learning based Approaches”, in Proceed-

ings of the 15th International Conference on Natural Language Processing (ACL),

Dec. 15, 2018.

Details: This paper presents an attempt towards performing cry sound classifica-

tion, into severe and non-severe categories. The work presented explores through

the possibilities offered by algorithms like SVM, multilayer perceptron and convolu-

tional neural networks towards this task. The classification performance obtained

is encouraging and comparable with other similar State-of-the-Art implementa-

tions reported as part of the literature.

2. S. Sharma and V. K. Mittal, “Infant cry analysis of cry signal segments towards

identifying the cry-cause factors,” in TENCON 2017 IEEE Region 10 Conference,

Penang, 2017, pp. 3105-3110. doi: 10.1109/TENCON.2017.8228395

Details: As part of this work, distinctive analysis of the acoustic characteristics of

infant cry sounds is performed, based upon basic statistical parameters like mean,

standard-deviation and normalized standard-deviation of f0 contour.

3. Shivam Sharma, Pruthvi Raj Myakala, Rajasree Nalumachu, Suryakanth V. Gan-

gashetty and V. K. Mittal, “A Study on Acoustic Features of Infant Cry Signal

for Different Causes of Crying”, in 3rd Int. Workshop on Affective Social Multi-

media Computing (ASMMC) 2017, Co-located with INTERSPEECH, Stockholm,

Sweden, Aug. 25th, 2017.

Details: This work reports the details of the primary acoustic analysis performed
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on IIIT-S ICSD2 data-set, conducted using f0 contour, signal energy and formant

frequencies.

4. S. Sharma, P. R. Myakala, R. Nalumachu, S. V. Gangashetty and V. K. Mittal,

“Acoustic analysis of infant cry signal towards automatic detection of the cause

of crying,” in 2017 Seventh International Conference on Affective Computing and

Intelligent Interaction Workshops and Demos (ACIIW), San Antonio, TX, 2017,

pp. 117-122. doi: 10.1109/ACIIW.2017.8272600

Details: This paper extends on the observations made in the work on acoustic

analysis, but with other infant subjects. Also the formant analysis is done using a

different approach.

5. S. Sharma and V. K. Mittal, “A qualitative assessment of different sound types of

an infant cry,” in 2017 4th IEEE Uttar Pradesh Section International Conference

on Electrical, Computer and Electronics (UPCON), Mathura, 2017, pp. 532-537.

doi: 10.1109/UPCON.2017.8251106

Details: The phenomenon and observations related to different dysphonatory

sounds present within an infant cry, were first acknowledged as part of this work.

It also discusses the correlation between different dysphonation types and various

factors like infant’s age or pathological conditions.

6. Shivam Sharma, Shubham Asthana, and V. K. Mittal. “A database of infant

crysounds to study the likely cause of cry”, in Proc. of the 12th International

Conference on Natural Language Processing, Trivandrum, India, NLP Association

of India, December 2015, pp. 112117.

Details: IIIT-S ICSD was first introduced through this publication. It also builds

upon preliminary acoustic analysis of cry signals for pain and discomfort categories.

Others

1. P. R. Myakala, R. Nalumachu, S. Sharma and V. K. Mittal, “A low cost intelligent

smart system for real time infant monitoring and cry detection,” in TENCON 2017

IEEE Region 10 Conference, Penang, 2017, pp. 2795-2800. doi: 10.1109/TEN-

CON.2017.8228337

Details: The work in this paper extends on the prototype, built as part of an

earlier attempt to facilitate real-time infant cry monitoring. This work considers

the analysis and detection of pain and discomfort cry sounds.

2. P. R. Myakala, R. Nalumachu, S. Sharma and V. K. Mittal, “An intelligent system

for infant cry detection and information in real time,” in 2017 Seventh Interna-

tional Conference on Affective Computing and Intelligent Interaction Workshops
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and Demos (ACIIW), San Antonio, TX, 2017, pp. 141-146.

doi: 10.1109/ACIIW.2017.8272604

Details: The paper reports on our first attempt towards prototyping a hard-ware

device that can help monitor the crying activity and facilitate notification based

reaction mechanism. Primary cause-category considered in this work is pain.
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